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Abstract

Eulerian-Lagrangian approaches for dispersed multiphase flows can simulate detailed flow structures
with a much higher spatial resolution than the Eulerian-Eulerian approaches. However, there are still
unsolved problems regarding the calculation method for accurate two-way interaction, especially on the
numerical instability due to the dispersion migration through discrete computational grids. Inadequate
solvers sometimes produce false velocity fluctuation which makes the simulation unstable. In this paper, a
new calculation method for dispersion-to-continuous phase interaction, which is accompanied by spherical
dispersion migration, is proposed. The basic principle of the method is the introduction of Lagrangian
filtering functions which convert discrete dispersion volume fractions to a spatially differentiable distri-
bution. The performance of linear, Gaussian and sinewave filtering functions is examined by simple
benchmark tests and applied to the simulation of dispersion-generated fluctuation. Using the present
method, three-dimensional continuous phase flow structures induced by rising spherical bubbles and/or
settling solid particles are demonstrated. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Numerical analysis; Dispersed multiphase flow; Dispersion-generated velocity fluctuation; Natural
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1. Introduction

Numerical methods for dispersed multiphase flows have played an important role for ana-
lyzing alternation mechanisms of various flow regimes due to the inclusion of dispersions, such
as bubbles, drops, and particles. Nowadays, a number of numerical methods for dispersed
multiphase flows have been proposed as follows. Direct numerical simulations (DNSs) of
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multiphase flows, for which the basic equations are constructed with no turbulent flow model
and no interface model, are quite powerful tools to elucidate microscopic interaction mecha-
nisms. For instance, turbulent structures accompanied by very fine particles whose sizes are
much smaller than the smallest length scale of the continuous phase can be analyzed, e.g.,
Squires and Eaton (1990) and Elghobashi and Truesdell (1993). The DNS for a channel flow
with large particles was demonstrated by Pan and Banerjee (1997) based on Stokesian dynamics.
For bubbly two-phase flow, Unverdi and Tryggvason (1992) directly solved deformable bubbles
using a front-tracking method. The motions of several bubbles were numerically analyzed using
the level-set method (Sussman et al., 1994), the interface tracking method (Tomiyama et al.,
1999), the volume of fluid (VOF) method (Tomiyama et al., 1993), and other interface-handling
schemes (e.g., Kunugi, 1997). However, because of the following two reasons the DNS for
bubbly flows usually produces a large computational load and needs an appropriate technique in
contrast to particulate multiphase flow. One is the very short relaxation time of the bubble
motions in liquids compared to that of solid particles or liquid drops. Another is the deform-
ability of the bubble interface. The large density ratio of the gas bubble to the surrounding
liquid also makes the DNS difficult. Eulerian—Eulerian types of governing equations such as the
two-fluid model (e.g., Druzhinin and Elghobashi, 1998) and the drift-flux model (e.g., Ransom,
1985) have been employed over a long time in nuclear-related research. These models obtain
grid-averaged flow structures of gas-liquid two-phase flows, and derive valid transient flow
characteristics when adequate constitution equations are employed. However, detailed mecha-
nisms of instantaneous and local phase interaction processes are not explored by Eulerian—
Eulerian models. Ensemble-averaged equations which are explained by Zhang and Prosperetti
(1994) are known as a exact mathematical expression of dispersed multiphase flow in the
Eulerian—Eulerian form.

Over the last decade Eulerian—Lagrangian models (E-L models, in abbreviation) have already
been applied to many kinds of dispersed multiphase flows (e.g., Reutsch and Meiburg, 1994;
Valentine and Decker, 1995, etc.). Since the E-L model employs the Lagrangian tracking method
for calculating each dispersion trajectory, it can simulate phase interaction with a much higher
spatial resolution than Eulerian—Eulerian model. The E-L models which are currently published
in the literature can be classified in three kinds. First is the DNS-type E-L model, second is the
Reynolds-averaged-type E-L model, and third is the large eddy simulation (LES)-type E-L
model. The DNS-type E-L model is constructed with the ordinary conservation law for each
phase without any turbulent flow model. Nadaoka et al. (1999) and Murai et al. (2000a,b)
succeeded in simulating buoyancy-generated velocity fluctuation in bubbly flow based on the
DNS-type E-L model. Reynolds-averaged E-L models using k—¢ transportation equations were
proposed by Moissette et al. (2000) and Decker and Sommerfeld (2000). LES-type E-L models
were proposed by Sugiyama and Matsumoto (1998) and Nadaoka et al. (1999). However, the
generality of their turbulent flow models is still in discussion.

Currently, however, the E-L model has the following problems in terms of dispersion-
to-continuous phase interaction. (1) When a dispersion passes through the interface of the
computational grid, false fluctuations of the continuous phase velocity is caused by sudden
changes of the local volume fraction. In the case of large dispersions, the computation often
collapses due to the numerical instability. (2) When a small grid is applied in order to improve the
spatial resolution, the amplitude of the false velocity fluctuation becomes large. In fact, the
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applicability of the E-L model is restricted by this problem especially for boundary layer issues
which need fine grid systems in the vicinity of the boundary, and for complicated flow geometries
which need generalized curvilinear coordinate systems using fine meshes. The fundamental reason
of the aforementioned two problems are related to the mathematically inappropriate procedure of
the E-L model in which both Eulerian-type and Lagrangian-type equations are combined and
solved as simultaneous differential equations.

In this paper, three kinds of techniques for removing the false velocity fluctuation and
improving the numerical accuracy are proposed. The basic principle of the present method is
to transform the local volume fraction which is obtained independently at each grid, into a
spatially differentiable distribution. Linear, Gaussian, and sinewave functions have been con-
sidered as the filtering function. The performance of these functions are theoretically examined
by single dispersion migration. Finally, the present DNS-type E-L model based on the
Lagrangian filtering function is applied to the three-dimensional simulation of dispersion-
generated velocity fluctuation. The demonstrated results show good analogy with experimental
observations, and revealed several qualitative features of the dispersion-generated velocity
fluctuation.

2. Governing equations of the Eulerian—Lagrangian model

The objective flow treated in this paper is a three-dimensional unsteady flow which involves
bubbles and/or particles in an incompressible viscous liquid. The translational motion of the
dispersion is tracked by using a Lagrangian-type equation, while the conservation laws of physical
quantities in the liquid phase are expressed by Eulerian-type equations.

2.1. Assumptions

All the equations are constructed under the following assumptions:

. Bubbles and particles are spherical. Reynolds number of the dispersion is lower than 100.

. Coalescence and fragmentation of bubbles do not happen. The maximum void fraction is lower
than 0.03.

3. Interactive forces between dispersions are ignored. That is, bubble-bubble, particle—particle,

and bubble—particle interactions are neglected.
4. There is no mass transfer through the surface of particles and bubbles.
. The flow field is isothermal.

o =

93]

2.2. Governing equations

Conservation equation for the liquid mass:

Oa
—gfL + V-oppu =0, (1)
where o is the liquid volume fraction and ug is the liquid velocity vector. The liquid density p; is

constant. These variables are grid-averaged in Eulerian frame.
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Gas volume fraction is defined as

1
=7 oca dV7 2
oG V/V G,Local ()

where oG 1 ocal 1S @ phase indicator, i.e., it takes the value of 1 for the gas phase and 0 for the non-
gas phase. V' is the volume of grid.
Solid volume fraction is similarly defined as

1
=7 oca dV’ 3
os % /V s, Local ( )
where og 1 oca 1S @ phase indicator, i.e., it takes the value of 1 for the solid phase and 0 for the non-

solid phase. Detailed calculation methods for Egs. (2) and (3) are explained in Section 3.
Equation for tracking each bubble position is

Xg = XG(O) + /OtllG dz. (4)

Equation for tracking each particle position is

XS:XS(O)—I—/OZUS dr. (5)

Here ug in Eq. (4) is velocity of individual bubble, and ug in Eq. (5) is that of individual particle.
These velocity vectors are defined at the center of gravity of each dispersion.
Conservation equation of the total momentum:

Qo pyu Oa u Oogpsl
% + Vo p uLu + % + V- a6 pguclG + % + V- aspsusti
= —Vp — (oLpL + agpg + osps)g + (Frr + Fog + Fss), (6)

where ug and ug are the gas and the solid phase velocities defined by grid-averaged value which is
calculated by averaging of the velocities of dispersions in each grid; p5 and pg are the densities of
the gas and the solid phases; p is the pressure and g is the gravitational acceleration; Fyy, Fgg, and
Fss are shear stress forces in the liquid, gas, and solid phases, respectively. Here the former is given

by
r 2
FLLZV',U VUL+VUL—§(V'UL>I . (7)

Fsg and Fsg are 0 because interactions among dispersions are ignored. u is the effective three-
phase flow viscosity which is expressed by the following equation:

5
p= (H—OCG +§0<s>#L- (8)

This description is theoretically derived for small dispersion Reynolds number as Batchelor (1967)
explained.
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The equation of bubble translational motion is

d

d D
- PcrVcirUck ~. \PPLVG UGk pLVGUL PGLYGKkE Gk VP
dt( 14 )+ & (BoLVc ) (ﬁ Ve )+ Vorg + VoV

_ -t
Dt
, 1 1
— VGkﬂ Vv up +§V(V . llL) +§pL(7U'ék)CDG|qu - uL|(qu - uL)
1
+§pLVGk(qu — llL) X (V X llL) =0. (9)

The equation of particle translational motion is

ﬁPLVSkuL) + psiVsig + VsiVp

d d D
3 (PsiTsrusi) + 5 (BpuVsiuse) — 4 (

1 1
— VSk,u(VzuL + gV(V . uL)) + = pp(mr5,) Cos|usk — up|(use —uy)

2
)
+3.23u; rsk\/Res(us, —uy) szoa (10)

where k indicates a label number of each dispersion,

1

2
Reg = sV 1@l (12)

VL
o=V xu, (13)
C :E(1+0122Re0‘55) (14)

DG Re . )
24 4.0

Cps=—+—=+04 15
DS R€+\/R_e+ ) (15)

where f is an added mass coefficient for a sphere, which is theoretically given by a linearized
version of the Euler equation. For the drag coefficient of bubbles, Eq. (14) proposed by Takemura
and Yabe (1997) is employed. This equation is obtained by experiments with clean bubbles and
applicable for a wide range of the Reynolds number from nearly 0 to 200. The drag coefficient of
solid particles are given by Eq. (15), which is an experimental formula of Brauer and Mewes
(1972). Auton’s lift force (Auton, 1987) and Saffman’s lift force (Saffman, 1965) are adopted for
lift forces on bubbles and particles, respectively. The history force on bubbles is neglected since it
does not work in the case of low Reynolds numbers under 50 (Takagi and Matsumoto, 1996). The
Basset force on particle is also tentatively ignored in this paper owing to the heavy computational
load for integrating the kernel. Although the exactness of the constitution equations should be
further improved, we believe the current models are sufficient for consideration of two-way
coupling method.
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We use the restricting condition on the volume fraction for three-phase flow to close the
equation system as

o +og +oas = 1. (16)
2.3. Numerical procedures

The highly simplified marker and cell (HSMAC) method is extended for this set of equations.
The three-dimensional cubic interpolated propagation (CIP) scheme proposed by Takewaki and
Yabe (1987) is applied for all the advection terms in the equations of liquid phase. The CIP
scheme calculates the discontinuous distribution accurately with high spatial resolution. For the
time-integration of the translational velocity of each dispersion, a second order Crank—Nicolson
scheme is employed. The detailed calculation procedures are as follows:

1. The translational velocity vector of each dispersion is calculated by Egs. (9) and (10) with
Egs. (11)—(15).

. The position of the center of gravity for each dispersion is calculated by Egs. (4) and (5).

. The distribution of the dispersion volume fraction is obtained by Egs. (2) and (3).

. The liquid velocity vector is calculated by Eq. (6).

. The liquid volume fraction is obtained from Eq. (1).

. The volume fraction error ¢ = o + ag + as — 1 is calculated from Eq. (16).

. The pressure correction value [p/] is calculated by the following equation in accordance with the
HSMAC method. Here Ax, Ay, Az, and Ar stand for the grid intervals in three-dimensional
coordinates and the differentiation time interval, respectively:

€

~N N B W

/

P = .
1 1 1
2At2<m+A—yz+@>

(17)

8. After the liquid velocity is corrected by the following equation, the calculation returns to step
(5) of the procedure. Here u; is a predicted value before the correction. The iteration of this
correction is performed until ¢ becomes smaller than the allowable error. When ¢ converges,
the calculation for getting the next time step solution is performed by going back to step (1)
of the procedure.

apup = opu; — ArVp'. (18)

3. Higher order two-way coupling for the Eulerian—Lagrangian model

In this section, dispersion-generated velocity fluctuation is classified into several fluid dynamic
processes and new calculation methods for the two-way coupling of the E-L model are proposed.

3.1. Phenomenological classification of dispersion-generated velocity fluctuation

The velocity fluctuation of the continuous phase induced by dispersions is essentially different
from that of turbulent flows. This is observed as a combined effect of several factors. In the case of
bubbles, the bubble-induced velocity fluctuation can be classified by the following five factors.
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1. Velocity fluctuation due to the exclusion effect of the surrounding liquid around individual bub-
bles. This fluctuation originates from the continuity equation as the component of a potential
flow, i.e., potential disturbance. It depends on the translational motion of the bubble. The am-
plitude of the velocity fluctuation is in inversely proportional to the volume fraction of the con-
tinuous phase.

2. Velocity fluctuation induced by a wake around an individual bubble. Namely, this fluctuation is
caused by a vorticity diffusion from the bubble interface to the downstream of the bubble.

3. Velocity fluctuation produced by unsteady vortex shedding around an individual bubble. This
fluctuation is one of the components of factor (2) in the case of high Reynolds number.

4. Velocity fluctuation accompanied by unsteady deformation of individual bubbles (Bhaga and
Weber, 1981). This fluctuation is one of components of factor (3) in the case of high Weber
numbers. For instance, a spiral motion and a zigzag motion induce this fluctuation.

5. Velocity fluctuation generated by the discrete arrangement of buoyancy as like in dilute bubbly
flows. This fluctuation occurs even if there is no relative velocity between bubbles and the sur-
rounding liquid phase. Murai et al. (2000b,c) reported that the wavelength of the velocity fluc-
tuation is associated with the mean bubble-bubble distance.

A number of discussions regarding the factors of (2)—(5) were reported by many researchers
using flow visualization techniques and DNS. However, factor (1) is the most essential component
because of the large velocity fluctuation amplitude involved. Actually, according to the experi-
ment of Iguchi et al. (1991), 30-40% of the velocity fluctuation generated by the bubbles is caused
by the potential disturbance in a bubbly two-phase jet flow. In their experiment, bubble Reynolds
number is around 1000. For the case of lower bubble Reynolds number, the potential disturbance
is more dominant than the other factors.

3.2. Previous problems of the two-way coupling in the Eulerian—Lagrangian model

The physical quantities of the dispersed phase are defined at individual dispersion positions in
the E-L model, while those of the continuous phase are defined by the averaged values for each
grid element. When mass, momentum and energy transfers from the continuous phase to the
dispersed phase are considered, ordinary Lagrangian interpolation methods are useful to express
the physical quantities of the continuous phase around each dispersion. Higher order interpola-
tion is recommended to simulate accurately the continuous-to-dispersed phase transfer. A novel
model using the Langevin equation was also proposed by Pozorski and Minier (1998). Employ-
ment of a fine grid system inside the regular grid is also a good idea as explained by Yeh (1990).
The E-L expression for the finite element method was demonstrated by Serdakowski and Caswell
(1988). Zhou and Leschziner (1999) summarized recent interpolation methods for a curvilinear
coordinate system.

On the contrary, when the dispersed-to-continuous phase transfer is computed, the following
approaches have been adopted as the simplest ways.

(a) The effect of the dispersion presence is only attributed to single grid elements where a center
of gravity of the dispersion exists.

(b) When the volume element of the dispersion strides across several grid elements, the effect of
the dispersion presence is attributed to all these grid elements by dividing the dispersion volume
into the several parts.
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Method (a) is applicable when the dispersion volume is sufficiently small compared to the size
of a grid element, while method (b) must be used when the dispersion volume is not negligible.
Anyhow, both methods (a) and (b) have the common problem that pulsating velocity fluctuation
which is not observed in actual bubbly flows is generated during the dispersion migration through
grid interfaces, because the physical quantities of the dispersion is expressed discretely at each grid
element. This pulsating velocity fluctuation is named ‘numerical pseudo-fluctuation’ in this paper.
The amplitude of the numerical pseudo-fluctuation is estimated to reach 10-100 times of the true
dispersion-generated fluctuation. The numerical pseudo-fluctuation not only makes the simula-
tion very unstable but also falsifies the dispersion motion due to the feed-back effect. In order to
overcome this problem, it is necessary to adequately construct a numerical coupling method. To
this end, Andrews and O’rourke (1996) proposed a new coupling based on the particle-in-cell
(PIC) method. They used a linear interpolation function between two grid elements which in-
volves a Lagrangian particle in order to obtain the Eulerian variables of the particle. Their
method was examined by testing several cases of one-dimensional flow. The authors (Murai et al.,
2000a) tried to remove the numerical pseudo-fluctuation by using the template-distribution (TD,
in abbreviation) method in a multi-dimensional space. In the TD method, a template with the
same size as that of grid element volume (grid element area in the case of two-dimensional
analysis) is utilized to transform the individual physical dispersion quantities to the Eulerian
frame. Several neighboring grid elements which overlap with the template receive linear-inter-
polated components of the physical dispersion quantities. Also since the center of gravity of the
template moves with each dispersion migration, numerical diffusion does not happen. Although
the authors succeeded in removing the numerical pseudo-fluctuation with the TD method, the
amplitude of the velocity fluctuation and the fluctuation waveform were not in good agreement
with the true fluctuation. Furthermore, the detailed flow structure which would be evaluated by
spatial derivative quantities, such as vorticity and shear strain rate, were not validly predicted by
the TD method because the TD method only ensures the first order continuity of the dispersion
quantities in space in the same way as the PIC method of one-dimensional tests by Andrews and
O’rourke (1996).

3.3. New methods for calculating the local volume fraction

In this section, a new technique which ensures the accurate transfer from a dispersion to carrier
phase is explained. Basically, the most important parameter which governs the two-way inter-
action is the local volume fraction of the dispersed phase, therefore, let us focus on a new defi-
nition of the local volume fraction. The velocity and the size of the dispersion can be defined and
transformed by using the same principle. Before explaining the new method, we have to state the
following two conditions for the new definition.

1. Conservation: The total amount of the local volume fraction must not be changed by dispersion
migration. This is necessary condition to keep the numerical conservation of mass and momen-
tum.

2. Continuity: The spatial distribution of the local volume fraction must have nth order continuity.
Here n is the class number of spatial differentiability.

For example, when the volume division methods (a) and (b) described in Section 3.2 are em-
ployed, the volume fraction is conserved but it does not ensure the continuity. When a smoothing
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filter such as a median or averaging filter is imposed to the results of (a) and (b), the continuity is

ensured to some degree but the conservation is not satisfied. On the contrary, when the TD

method is applied, the conservation and continuity of first order (n = 1) are satisfied simulta-

neously. In order to ensure further higher order continuity, the following two kinds of template

filtering functions are proposed.

1. Gausssian filtering function [template-distribution method with Gaussian function (TD-G
method, in abbreviation)].

2. Sinewave filtering function [template-distribution method with sinewave function (TD-S meth-
od, in abbreviation)].

The template filtering function is defined for each center of gravity of the dispersion like as in
the previous linear interpolation (i.e., TD) method. Fig. 1 shows a conceptual figure of the two
methods. By using the template filtering function, the dispersion volume J which exists at an
arbitrary position is divided into surrounding grid elements in each direction x, y, and z. When the
dispersion migrates, the surrounding volume fraction changes according to the template filtering
function. The local volume fraction, therefore, varies always continuously while the dispersion
migrates inside a grid element or passes through a grid interface. By the way, Gaussian function
has an infinite profile in space in contrast to sinewave function with a period. So that the position
which has less than 0.01 of the peak value of the Gaussian function is ignored. In this case,
Gaussian function is slightly amplified to keep exactly the total volume of dispersion in the
Eulerian frame. In this point, the sinewave function is numerically suitable as a compact filtering
function since it requires only a few grid elements.

M Template Ve Dispersion V

r P ~ // / ...........

1 fid, jd, kd) fid+1, jd, kd)

f(id-1,jd, kd)

o X

Sinewave or Gaussian function

i : >
kd-1 | kd i kdtl
G aussian f(x) _ 1 e_(x;ot';)z
)3';0' (‘7=A%’ ’”:A%)
Si i
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Fig. 1. TD algorithm with Gaussian function and sinewave for the template function.
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3.4. Computation of local volume fraction, liquid velocity, and liquid acceleration using new methods

In the E-L model, when the local volume fraction of the dispersion fluctuates, the liquid ve-
locity at the grid interface is computed by Eq. (20) which is a discretized form of the mass con-
servation equation (19) for incompressible liquids:

o(l —a)
ot

.t ~f 1 1 1

where up in Eq. (19) is the velocity vector and the subscript L stands for the liquid phase. « is the

local volume fraction of dispersion, and Ax, Ay, and Az are the grid width in each direction.
Fig. 2 shows a time history of the local volume fraction in a control volume obtained by each

method. The time is normalized by the time which the dispersion spends to pass a grid. Fig. 3

+ V- (1l —a)u, =0, (19)
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Fig. 2. Local volume fraction in the control volume obtained by each method.
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Fig. 3. Liquid velocity exit component uj at the grid interface.
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shows the outward liquid velocity component u; at the grid interface calculated by Eq. (20). The
liquid velocity is normalized by the dispersion’s passing velocity. Fig. 4 shows the outward liquid
acceleration component normalized by the acceleration given by the dispersion’s velocity and the
passing time. As a referential value for comparison, the ‘P-Flow’ in the figures expresses a
waveform calculated from the three-dimensional potential flow around a fluid sphere which
moves with a constant velocity. The equation of Hill’s spherical vortex given by the following
equation is used for comparison:

1 < ) R3> .2
V=_Us|r——]sin" 0, r>R, (21)
2 r

where Us is the relative velocity of the dispersion against the continuous phase, r is the distance
from the center of gravity of the dispersion, and R is the dispersion radius. Hill’s spherical vortex
is irrotational outside the sphere, hence, it cannot be the model for a turbulent eddy generated by
dispersion. However, it approximates roughly the flow generated by dispersion migration in the
case of intermediate Reynolds number without flow separation. At least, it satisfies equation of
continuity, the potential disturbance solved by the present two-way coupling method can be
examined.

The ‘SMP’ in Fig. 2 represents the result without the TD method, i.e., the simplest method (1)
mentioned in Section 3.2. The ‘TD’ in Fig. 2 represents the result obtained by the linear TD
method, ‘TD-G’ and ‘TD-S’ represent the results obtained by the TD method with Gaussian and
sinewave filtering functions, respectively. The ratio of the dispersion volume to the grid volume is
0.11 in this case. The results allow the following conclusions:

In the SMP method, the pulsating velocity occurs when dispersion passes through the grid
interface. The maximum velocity is around 20 times the peak velocity of the potential flow. In
the TD method, though the maximum velocity is decreased, rapid change of the liquid velocity
still remains. The results obtained by the TD-G and the TD-S methods have no stepwise
waveform.

Acceleration (-)

=~ L ~
el ® T

1 1.5 2 2.5 3 3.5 4
Time (=)

Fig. 4. Exit component of the acceleration of the liquid phase at the grid interface.
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By differentiating the velocity waveform with respect to time, the acceleration of the liquid is
obtained as shown in Fig. 4. While the SMP method and the TD method produce pulse-like
waveforms in the result, the TD-G and the TD-S methods result in reasonable fluctuations. The
best method that we can choose through the results of Figs. 3 and 4 is the TD-S method because it
provides the best approximated waveforms for the potential flow.

3.5. Relationship between the volume fraction and the maximum velocity of the liquid phase

In order to summarize the aforementioned characteristics, the relationship between the local
volume fraction and the maximum absolute velocity of liquid phase is computed as shown in
Fig. 5. In this test case, migration of Hill’s spherical vortex perpendicular to the grid interface is
examined. Computation is performed in three-dimensional space, and the ratio of the dispersion
volume V5 to the grid volume J¢, i.e., Vg /Vc is varied to consider the grid dependency. Also r in
the figure means the ratio of the dispersion radius to the grid length. The following features
emerge.

1. The maximum velocity increases as the (V5 /Vc) ratio increases. This agrees with the solution of
the potential flow.

2. The maximum velocity which is obtained by the SMP method is around 20 times as large as the

solution of the potential flow for all the treated ranges.

. The maximum velocity with the TD method is underestimated compared to the potential flow.

4. The TD-S method yields results the most closely related to the potential flow in all the treated
ranges. This means that the TD-S method is the best approximation independently on the
volume ratio Vg /Vc.

The above results are only confirmed in the case of perpendicular migration of the dispersion
relative to the grid interface. According to the additional analysis for oblique passing of dispersion
to the grid interface, the maximum velocity has been changed only around 20% from the above-
mentioned result. This change is much smaller than difference in choosing the coupling method.
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Fig. 5. Relation between local volume fraction and maximum velocity of liquid phase.
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Therefore, it can be concluded that the introduction of the higher order filtering function produces
much better liquid phase fluctuations than the conventional methods.

3.6. Three-dimensional two-way simulation of a single rising bubble

In this section, we will examine how the two-way coupling method governs the dispersion
motion. The objective flow is a single rising bubble motion in a quiescent liquid, which has a
constant terminal velocity without unsteady fluctuation. This flow field is quite simple but suitable
for strictly evaluating the two-way coupling method. Three kinds of coupling methods, the SMP
method, the TD method and the TD-S method, are compared here. Table 1 shows the simulation
conditions. Both the initial velocity of the bubble and liquid are 0. Fig. 6 represents the time
evolution of the rising velocity obtained by the three methods. The following conclusions can be
made.

1. A pulsating fluctuation of around 60% to the average rising bubble velocity is generated during
the bubble passing the grid interfaces in the case of the SMP method. This fluctuation is caused
by a feed-back effect of the numerical pseudo-fluctuation.

Table 1
Simulation conditions for three-dimensional bubbly flow
Calculation domain 0.lmx0.1mx0.1m
Grid division number 48 x 48 x 48
Time integration step 0.0005 s
Simulation period 2.0000 s
Kinematic viscosity of the liquid 107° m?/s
Gravitational acceleration 9.806 m/s”
Gas density 0 kg/m’
Liquid density 10° kg/m’
Bubble radius 0.3 mm
’80' 076 = =
£ . “
~0.074 | : SMP
3 L TD B //
-é 0.072 | // ¢
g o 07 _‘;_(/W‘xmo—.rw_‘,\Ax f\% WUX/x/D‘O'”%m}(k ;\//</)\\‘/ /
o B \ i
o i '
§ 0. 068 * TD-S
20.066 :
[7: j !
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Fig. 6. Time evolution of rising bubble velocity obtained by each method.
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Table 2
Comparison of results obtained by each method
Local volume fraction Continuity of liquid Vs = V6 lma/ Vo (%)
Continuity Conservation
SMP X o X 62.8
TD o o X 0.4
TD-S o (higher order) o o 0.5

o: satisfactory; x: unsatisfactory.

2. Although a slight velocity fluctuation is still observed in the cases of the TD and TD-S meth-
ods, the amplitude is much reduced in comparison with the SMP method. The small fluctuation
depends on the differentiation scheme of the translational bubble motion. For example, the
lower order differentiation derives a low-accuracy result but a smoothed waveform while the
higher order differentiation derives higher accuracy but a partially oscillatory waveform. Any-
way, the slight error is not serious compared to the effective improvement due to the filtering
functions.

Table 2 summarizes the characteristics of the three coupling methods. The upper right column
in the table is the ratio of rms fluctuation velocity to the average velocity. It is concluded that the
TD-S method ensures both continuity and conservation of the local volume fraction, and also the
false velocity fluctuations of continuous and dispersed phases are satisfactorily removed.

4. Applications to bubbly flow, particulate flow, and three-phase flow

In this section, the proposed method is applied to the two-way simulation of a dispersion-
generated fluctuation. The objective flow in this section is natural convection induced by the body
forces of many bubbles and solid particles. No main liquid flow or a solid wall boundary is in-
troduced. Therefore, only the structure of the dispersion-generated fluctuation is focused on. The
simulation conditions are summarized in Table 3. a1, 0ig, and og in the table are the total volume
fractions of the three-phase flow, bubbly flow and particulate flow, respectively. Ng and Ng are the
total numbers of the bubbles and the particles, respectively. The initial condition is as follows: the
liquid is quiescent, all the dispersions are randomly located, and the velocity of the dispersion is 0.
All the six boundaries of the computational domain are completely periodic both for the con-
tinuous and the dispersed phases. The maximum Reynolds number of the dispersion is around
100.

Before describing the analysis, experimental photographs of the dispersion-generated fluctua-
tion are shown in Figs. 7(a) and (b). Detailed experimental conditions are described in the figure-
caption. The pathlines of tracer particles are visualized by a sheet of light whose thickness is 5
mm. The tracer particles are made of spherical high porous polymer with 1010 kg/m3 in density
and 250400 pm in diameter. They indicate the presence of vortical structures in the interval space
of the dispersions for the both cases (a) and (b). The typical length of the vortex is much longer
than the dispersion size and corresponds roughly with the dispersion distance. Therefore, it is
confirmed from this observation that the assumptions for the E-L model are valid for the ap-
plication.
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Table 3
Simulation conditions for three-dimensional analysis
Calculation domain 0.lmx0.1mx0.1m
Grid division number 48 x 48 x 48
Time integration step 0.0005 s
Simulation period 4.0000 s
Kinematic viscosity of liquid 1076 m?/s
Gravitational acceleration 9.806 m/s’
Gas density 0 kg/m’
Liquid density 103 kg/m’
Solid density 2 x 10° kg/m’
For bubbly flow 0 =2.6180% (Ng = 50,000; R = 0.5 mm)
For particulate flow s =2.6180% (Ns = 50,000; R = 0.5 mm)
For three-phase flow Case 1 a1 =0.0042% (Ng = 5000, N5 = 5000; R = 0.1 mm)
Case 2 or=0.3393% (Ng = 15,000, Ns = 15,000; R = 0.3 mm)
Case 3 or=2.6180% (Ng = 25,000, Ns = 25,000; R = 0.5 mm)

R: dispersion radius.

4.1. Structure of the two-way dispersion-generated velocity fluctuation

Fig. 8 shows the iso-surface structure of enstrophy in the liquid phase for the three cases of
three-phase flow. In this simulation, the possibility of collision between bubbles and particles in
the case (c) is not low in the actual situation because of counter-current motion. However, the
effect of collision is ignored here by two reasons. That is, (1) general statistic or deterministic
model of bubble—particle collision is not established yet. The collision pattern is governed by
micro-scale flow in a liquid film between two surfaces of dispersions as well as electric and
chemical properties of the surfaces. (2) The collision pattern is not so elastic due to the liquid film

(b)

Fig. 7. Experimental image of liquid fluctuation: (a) bubbly flow; (b) three-phase flow. Experimental conditions of
bubbly flow are ag = 0.612%, Rg = 0.64 mm, and Ry = 0.15 mm, while those of three-phase flow are ar = 0.529%,
Rg = 0.82 mm, Rg = 0.98 mm, R; = 0.21 mm, and Ry = 0.02 mm.



2144 A. Kitagawa et al. | International Journal of Multiphase Flow 27 (2001) 2129-2153

E,=133.70, E,1=324. 88, E,|1,=0. 00 (1/5%)

Fig. 8. Iso-surface structure of enstrophy in liquid phase induced by bubbles and particles: (a) case 1
[er=0.0042% (Ng = 5000, Ns = 5000; R = 0.1 mm)]; (b) case 2 [ar=0.3393% (Ng = 15,000, Ng = 15,000; R =
0.3 mm)]; (c) case 3 [a1=2.618% (Ng = 25,000, Ng = 25,000; R =0.5 mm)]. Enstrophy E, is defined as |V x u.|*/2.

that the displacements of collided dispersions are sufficiently short in comparison with grid size.
Hence, the grid-averaged quantities such as mass and momentum are not greatly affected even if
the collision model is introduced.
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As the dispersion volume fraction becomes larger, (a)-(c) of the figure, the enstrophy is
rapidly increased to higher values and the flow structure becomes like a turbulent flow involving
small eddies. This complicated flow is one of typical structures of so-called pseudo-turbulence.
In this case, the pseudo-turbulence has long wave length in the vertical direction because of
rising bubbles and settling particles. Right parts in the figure represent instantaneous enstrophy
distribution in the horizontal and vertical cross-sections. The enstrophy is isotropic in the
horizontal plane while it is heterogeneous in the vertical cross-section. It means that the hori-
zontal velocity fluctuation is caused by the potential disturbance as mentioned in Section 3,
while vertical velocity fluctuation is induced by combination of the potential disturbance and
body force.

Fig. 9 shows bubbles (o), particles (o) and enstrophy distributions in a vertical cross-section.
In this figure, three kinds of dispersed flow are shown: (a) for bubbly two-phase flow, (b) for
particulate two-phase flow, and (c) for bubble—particle three-phase flow. The total volume
fraction of dispersion is all 2.618%, and the radius of the dispersion is 0.5 mm for all the three
cases (see Table 3 for detailed condition). The figures are drawn after the flow field be-
comes sufficiently developed (at ¢ = 4.0 s). The judgment of the flow’s development is done by
monitoring the wave spectrum of the liquid velocity field. The following points can be
confirmed.

1. The bubble distribution in the case of bubbly flow (see Fig. 9(a)) seems to be forming bubble
clusters. Although no bubble-bubble interaction model is directly introduced in the present E—
L model, the bubble clusters can be generated by the local pressure gradient in the region which
has a high enstrophy. The pressure gradient force acting on the bubble due to the enstrophy is
much weaker than that due to gravity, so that it takes a few seconds to observe the bubble clus-
ters.

2. In the particulate flow, the local maximum of enstrophy is larger than that of the bubbly flow
(see gray level in Fig. 9(b)). This difference is related to the status of the particle distribution.
That is, the particles will be scattered more uniformly than the bubbles since inertia force is lar-
ger than that of the surrounding fluid. Therefore, the particles accumulate rather in the high
strain rate region than high enstrophy region (e.g., Squires and Eaton, 1990; Wang and Maxey,
1993). Also they allow us to keep up the high enstrophy structure while the bubbles do not pro-
duce the high enstrophy region because body force of the particle acts outside of each rotational
motion of the liquid. The lift force of the particle which is stronger than that of the bubbles is
also the factor to enhance the scattered distribution.

3. In the case of bubble—particle three-phase flow (see Fig. 9(c)), the maximum of enstrophy is
weaker than that of the particulate flow. The order of the magnitude is as same as bubbly
two-phase flow. However, the bubbles in the three-phase flow do not cause bubble clusters
clearly. The reason is that the flow structure of liquid phase is significantly altered by momen-
tum interaction with particles. This is said just a two-way interaction phenomenon which is not
to be predicted by one-way analysis or linear overlapping of two kinds of flow structure, i.e.,
bubbly and particulate two-phase flows.

Fig. 10 shows the probability density profiles of dispersion in three-phase flow regarding to the
enstrophy of liquid phase at ¢t = 4.0 s. The probability I' is normalized by that of liquid phase,
hence, I' > 1 means that the dispersion concentrates in the corresponding enstrophy region, and
I' < 1 means that it avoids the region. It is confirmed from the result that the bubbles distribute in
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(b)

(©
o I 359 (1/%)

Fig. 9. Enstrophy distribution in liquid phase and dispersion in a vertical cross-section: (a) bubbly flow
[0 =2.618% (Ng = 50,000, R = 0.5 mm)]; (b) particulate flow [0s=2.618% (Ns = 50,000, R = 0.5 mm)]; (c) three-
phase flow [ar=2.618% (Ng = 25,000, Ny = 25,000, R = 0.5 mm)] (o, bubble; e, particle; gray-scale, enstrophy, i.e.,
IV x u|/2).

high enstrophy region while the particles do not there. Since these characteristics were reported by
many researchers using DNS (e.g., Squires and Eaton, 1990; Wang and Maxey, 1993; Druzhinin
and Elghobashi, 1998), it is concluded that the present method has high applicability for simu-
lating detailed flow structure.
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Fig. 10. Probability density profiles of dispersion in three-phase flow regarding to the enstrophy of liquid phase at
t =4.0s. E, is enstrophy defined as |V x uL|2 /2. I' is probability of dispersion’s presence at arbitrary enstrophy of
liquid phase, normalized by that of liquid phase.

4.2. Rising and settling velocity of dispersions in the dispersion-generated velocity fluctuation

Fig. 11 shows a time evolution of the absolute value of average rising bubble velocity and the
average settling particle velocity in each entire flow field. The notes of ‘Bubble(B-Flow)’, ‘Parti-
cle(P-Flow)’, ‘Bubble(T-Flow)’, and ‘Particle(T-Flow)’ in the figure represent the bubble’s velocity
in the bubbly flow, the particle’s velocity in the particulate flow, and the bubble’s and the particle’s
velocities in the three-phase flow, respectively. Although the sizes of the bubble and the particle
are the same, their terminal velocities in quiescent liquid are different due to the different drag

coefficient.
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Fig. 11. Time evolution of the average rising bubble velocity and the average settling particle velocity in each flow field.
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Fig. 12. Relation between the bubble rising velocity and the local gas volume fraction in bubbly flow.

In the transitional stage after starting the simulation, both bubble and particle motions are
rapidly accelerated. Then the bubble velocity is slowly reduced by the effect of the two-way in-
teraction while the particle velocity is kept almost constant. In the quasi-steady state after t = 2 s,
the rising velocity of a bubble in the three-phase flow is faster than that of a bubble in the bubbly
flow. This difference occurs due to whether bubbles generate bubble clusters or not as mentioned
in the previous section. For the evidence, the relationship between the bubble rising velocity and
the local gas volume fraction in bubbly flow is shown in Fig. 12. The bubble rising velocity de-
creases as local volume fraction of bubble increases. The decrease of the bubble velocity is ex-
plained by the reduction of the local pressure gradient (i.e., the gravity term in Eq. (6)) in the
clustering case. The average particle velocity in the three-phase flow is almost unchanged com-
pared to that of particulate flow because the particles are uniformly distributed.

4.3. Kinetic energy induced by body forces of bubbles and particles

Fig. 13 shows the time evolution of the kinetic energy in liquid phase for the three cases. The
kinetic energy is calculated by squared absolute velocity of liquid considering the decrease of
liquid volume fraction in the dispersion mixture. This figure confirms that particulate flow has the
largest kinetic energy among the three cases. This reason is simply the difference of averaged
dispersion velocity as shown in Fig. 11. Namely, the drag of a particle is larger than that of a
bubble, so that the dispersion-to-liquid interaction is enhanced. In addition, the scattered particle
distribution may also induce effectively velocity fluctuation for a wider region. The kinetic energy
of the three-phase flow is almost the same as that of the bubbly flow. This is because the local
averaged body force which acts on the liquid flow in the vertical direction is reduced by simul-
taneous presence of bubbles and particles. This reason corresponds with the spectra of the body
force as follows. Figs. 14(a) and (b) show the spectra of the grid-averaged body force for initial
condition (a) and for the quasi-steady state at t = 4.0 s (b). These spectra are obtained by a
Fourier transformation of the body force distribution (gravity term in Eq. (6)) in the entire
physical space. The maximum wave number is determined by the inverse number of grid size
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Fig. 13. Kinetic energy of liquid phase for each flow field.
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Fig. 14. Body force for bubbly flow, particulate flow and three-phase flow: (a) 1 =0.0 s; (b) t =4.0 s.

which is larger than dispersion size. Hence, the spectra shown in this figure is that for the
wavelength longer than the grid size. In the initial condition in which all the bubbles and the
particles are randomly distributed, spectrum of three-phase flow is smaller in comparison to that
of the other two-phase flow. This is owing to the offset effect between the buoyancy of the bubbles
and the weight of the particle. In the quasi-steady state (b), the bubbly flow has a higher spectrum
in the high wave number region than the other types of flow. This is due to the bubble clustering
effect which induces wavy fluctuation of body force. The wave number of the spatial fluctuation is
determined by that of the cluster size and it ranges from k = 50 to 150 m~!, i.e., In(k) =4 to 5.
Thus, the bubbly flow would generate higher velocity fluctuation than the others if the drag and
the lift forces on the bubble were set the same as those on the particle.

By the way, the data of these spectra can be validly obtained by using the present TD-S method.
When the simple definition of the dispersion volume fraction was daringly used, the spectra had
abnormally high value in the high wave number region, and its numerical simulation was
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Fig. 15. Kinetic energy distribution in liquid phase and dispersions in a vertical cross-section: (a) SMP; (b) TD-S.

sometimes broken down in the midway before reaching quasi-steady state. Fig. 15 is the com-
parison of three-phase flow structure between simple definition, SMP (a) and TD-S method (b).
Kinetic energy of liquid is too large in the swarm of dispersions in the case of simple definition.
This is also recognized by the time evolution of the kinetic energy as shown in Fig. 16. The kinetic
energy must increase continuously but that obtained by simple definition suddenly increases in
initial transient stage and keeps too high value after 0.1 s.

Finally, the grid dependency of the present model is examined using two kinds of grid division
numbers, 36° and 483. The result is summarized in Table 4 and each value is time-averaged for 1.0
s from 3.0 s. As the principle of grid-averaged model, the amplitude of dispersion-generated
fluctuation velocity of liquid phase depends on the volume ratio of the dispersion to grid as ex-
plained in 3.5. However, the resultant data have good agreement between the two results. This
means, the numerical stability and accuracy are significantly improved by introducing the filtering
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Fig. 16. Kinetic energy of liquid phase in three-phase flow for each method.
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Table 4

Examination of grid dependency
Grid Ko Ks Kt Vsl [Vo-p| |Vrs] [Vrp]
division (m?/s?) (m?/s?) (m?/s?) (m/s) (m/s) (m/s) (m/s)
number
36 x 36 x 36 1.065 x 10~# 2.738 x 1074 1.195 x 104 0.203 0.110 0.219 0.113
48 x 48 x 48 1.050 x 10~# 2.210 x 1074 1.022 x 1074 0.195 0.108 0.208 0.111

Kg, Ks, and Kt stand for kinetic energy of liquid phase in bubbly flow, particulate flow, and three-phase flow,
respectively. |V | and |Vp.p| stand for absolute averaged rising velocity of bubbles in bubbly flow and absolute averaged
settling velocity of particles in particulate flow, respectively. |Fr.g| and |Vrp| stand for absolute averaged rising velocity
of bubbles and absolute averaged settling velocity of particles in three-phase flow.

functions, and simulated flow structure is not sensitively altered by changing the grid division
number.

5. Conclusions

In this study, several problems of computing dispersed multiphase flow using the Eulerian—
Lagrangian (E-L) model were explained and a new two-way coupling method was proposed. As
an application, structures of dispersion-generated velocity fluctuation were demonstrated.
Through the present investigation, the following points have been clarified.

1. When a Lagrangian filtering function is used to calculate the spatial volume fraction of disper-
sion, the velocity fluctuation of the continuous phase due to the individual dispersion migration
through Eulerian frames can be accurately obtained. The filtering functions based on a Gauss-
ian distribution (TD-G) and a sinewave distribution (TD-S) ensure much better waveforms of
the velocity fluctuations than conventional simple methods. After the appropriate solution for
the velocity fluctuation of the continuous phase can be obtained, the false velocity fluctuation
of the dispersion is also removed.

2. The filtering function using the sinewave is recognized as the best method because of two rea-
sons: (a) the maximum velocity fluctuation agrees best with a potential flow (i.e., potential dis-
turbance) for a wide range of sphere sizes; (b) the sinewave function is easily introduced to
converting the volume fraction of dispersion because it is a compact filtering function using
a few grid elements.

3. Detailed flow structure of dispersion-generated velocity fluctuation can be predicted by using
the present new E-L model. There is no erroneous behavior found in the results when total vol-
ume fraction is under 3.0%. Several features of three kinds of dispersed multiphase flow are
demonstrated. As described in Section 4, some discussion could be made on the relationship
among the flow fluctuation of continuous phase, dispersion’s motion, and spectrum of body
force.
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